Typical and Atypical Neural Stem Cell Niches

نویسندگان

  • Stefano Pluchino
  • Luca Bonfanti
چکیده

The adult central nervous system (CNS) is a tissue with a low rate of renewal and can be seriously affected by injuries and diseases. The generation of new neural cells, such as neurons and glia, is prevalently restricted to specific CNS areas (niches) deriving from embryonic germinative layers. Continual neurogenesis is sustained by multipotent astro/radial glia-like neural stem/precursor cells (NPCs), which persist within adult CNS niches endowed with molecular/cellular signals capable of regulating their biological features. Multipotent NPCs have less typically been identified in the more spread mammalian CNS parenchyma. Due to their inherent plasticity, NPCs from typical and nontypical CNS germinal areas might therefore concur to nervous system repair upon injury and/or disease. In parallel, the transplantation of NPCs promotes remarkable CNS repair via both cell replacement as well as intrinsic bystander neuroprotective capacities. Strictly depending on when injected into a live host suffering from a CNS disease (e.g., inflammatory vs. degenerative), transplanted NPCs display an extraordinary capacity of finding in vivo the proper way(s) towards certain favourable perivascular sites (atypical niches), where they survive and act as therapeutic weapons trough the interaction with the (micro)environment. The next challenge for the future of (endogenous vs transplanted) stem cell-based therapies will be the development of new protocols for carefully weighting and tightly regulating the different therapeutic alternative mechanisms NPCs may instruct in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remodelling the injured CNS through the establishment of atypical ectopic perivascular neural stem cell niches.

Compelling evidence exists that somatic neural stem/precursor cell (NPC)-based therapies protect the central nervous system (CNS) from chronic inflammation-driven degeneration, such as that occurring in experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS), cerebral ischemic/hemorrhagic stroke and spinal cord injury (SCI). However, while it was first assumed that NPC transpla...

متن کامل

Neural stem cell niches: roles for the hyaluronan-based extracellular matrix.

Neural stem/progenitor cells capable of differentiating into the neurons and glial cells that populate the mammalian central nervous system (CNS) persist in specific neural stem cell niches that regulate stem cell proliferation, survival and differentiation. There is growing evidence that the extracellular matrix within neural stem cell niches is required for neural stem cell maintenance. Here,...

متن کامل

Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche.

In the adult CNS, neurogenesis takes place in special niches. It is not understood how these niches are formed during development and how they are maintained. In contrast to mammals, stem cell niches are abundant in zebrafish and also found in other parts of the brain than telencephalon. To understand common characteristics of neural stem cell niches in vertebrates, we studied the origin and ar...

متن کامل

Brain micro-ecologies: neural stem cell niches in the adult mammalian brain.

Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008